
Comment on 'The relationship between the symmetries of and the existence of conserved

vectors for the equation r..+f(r)L+g(r)=0'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 1157

(http://iopscience.iop.org/0305-4470/24/5/028)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 14 (1991) 1157-1159. Printed in the U K  

COMMENT 

:I 
’ ,{ 
1. 
i Comment on ‘The relationship between the symmetries of and 

the existence of conserved vectors for the equation 
i + f ( r ) L + g ( r )  =0’ 

Henri Bacry 
Centre de Physique Thiorique. case 907, 13288 Marseille Cedex 9, France 

Received 10 September 1990 

Abstract. We comment on a recent paper by Leach and Gorringe. Our aim is to correct 
an incorrect statement and to examine why the groups SO, and SU, are the only compact 
dynamical groups for a panicle i n  a spherical potential. The analysis is based on the 
distinction between Lie groups and Lie algebras and on a theorem due to Benrand about 
closed orbits. 

Recently, Leach and Gorringe (1990) made a study of the relationship between 
the symmetries of and the existence of conserved vectors for the equation r +  f ( r ) L +  
g (  r )  = 0.  The results of their article cannot be understood if the word symmetry is not 
defined properly, that is with the aid of groups instead of algebras. Moreover, the role 
of the groups SO4 and SU, can be understood once we relate them with a theorem due 
to the XIXth century mathematician Bertrand. 

The statements presented by the authors in their introduction are misleading and, 
strictly speaking, even wrong. As an example, the first sentence states that all central 
potential problems possess the dynamical symmetries SO, and SU3,  The reader would 
be tempted to ask why SO4 is usually associated with the I / r  potential and SU, with 
the three-dimensional isotropic oscillator rather than the converse. It is possible to 
clarify the situation with the aid of a few general properties. 

Given a Hamiltonian H on a six-dimensional phase space, if one is able to find n 
observables which are Poisson commuting with H and are a basis of a given Lie 
algebra, this will be also true for any other Hamiltonian; the reason is the following 
one: all symplectic manifolds of a given dimension are locally isomorphic (Bacry et 
al 1966). In this sense, the Lie algebra of SO, (or SU,) is a ‘symmetry algebra’ for all 
problems with three degrees of freedom, even if the Hamiltonian is not associated 
with a central potential. 

A kinematical symmetry is described by a group of spacetime transformations 
leaving the Hamiltonian invariant. The Noether theorem provides us, in such a case, 
with a set of conserved momenta. For instance, any spherical potential is responsible 
of the existence of the symmetry group SO, and, consequently, of the conserved angular 
momentum Lie algebra. According to the above statement on symplectic manifolds, 
any three-dimensional problem has three observables which are Poisson commuting 
with the Hamiltonian and forming a basis for the Lie algebra of SO,. I t  does not 
follow however that any three-dimensional problem possesses the spherical symmetry 
SO,. It is important to distinguish between group and algebraic symmetry or, in other 
words, between global and local symmetry. 
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There exists a slightly generalized situation where a generalized kinematical sym- 
metry can be defined. Instead of the Hamiltonian to be invariant, one can consider 
an  invariant field of forces. Everybody knows, for instance, that a charged particle in 
the field of a magnetic monopole is a problem with spherical symmetry. The generalized 
Noether theorem provides us with a generalized angular momentum. It is clear that 
in this problem we have also SO, as a symmetry group. 

A dynamical symmetry can be defined as a group GE of canonical transformations 
acting on the set of motions of given energy E. For two different energies E and E’ ,  
the groups can be either isomorphic or distinct. As an example, for the isotropic 
three-dimensional oscillator, we have the symmetry group SU3 for all values of the 
energy but for the Kepler problem, we have SO, for E < 0, SO,,, for E > 0, and the 
Euclidean group for E =O. The relationship between these groups is described by the 
contraction procedure (Inonii and Wigner 1953). 

As we shall see, it is natural to mention the Bertrand theorem (Bertrand 1873) 
when we are concerned with spherical potentials. Let us state it. If the spherical 
potential V(r) and its derivatives are continuous up to the third order, all bounded 
trajectories are closed if the potential is of the form tmm’r’ or -k2/r .  

I think that the reader will appreciate the following theorem (Bacry 1973). Suppose 
d V( r) /dr  > 0 and consider the set of motions of energy H .  The length of the angular 
momentum lLI is extremum for circular trajectories. This extremum is a maximum 
provided r’(dV(r)/dr) is an increasing function. In that case, L2 takes all values from 
zero (rectilinear motions) to L i a x  = mr3(dV(r)/dr) (circular motions). 

This theorem permits to clarify the relationship between SO, and the two potentials 
- k 2 / r  and imo2r2 .  For both, the condition of the theorem is satisfied. Because a 
circular trajectory satisfies H =$r(dV(r) /dr)+ V(r), one obtains 

1, 

\ 

2 mk4 
L,,, = - - 

2 H  

for the Kepler potential and 

H 2  
LImx = - 

W 2  

Let us now define the vector A as follows. It lies in the direction of the aphelion 
and has its length given by 

A2 = L i a x  - L2. 

Any Kepler motion of a given negative energy H is uniquely described by the two 
orthogonal vectors L+ A and L - A.  These two vectors define a set of two points on 
a sphere of radius cmax = ct A’. If follows that the set of motions we are interested 
in is isomorphic to the topological product S 2  x S2.  This is a homogeneous space of 
SO,, namely SO,/(U, x U,). That is why SO, is a dynamical group for the bounded 
motions of the Kepler problem. 

The situation is different for the harmonic oscillator because we now have two 
aphelions. 7’hat is why we cannot distinguish between the IWO vectors L + A  and L - A .  
The set of motions of given energy H is the symmetrized product of two spheres 
(S2x S 2 ) / Z 2 ,  which is a homogeneous space of SU,, namely SU,/U2. 

The role of the Bertrand theorem is obvious. If there was another spherical potential 
for which all bounded trajectories were closed, the continuity conditions would imply 
that all these trajectories would have a fixed number of aphelions, say n. The set of 
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bounded motions of energy H would be the symmetrized product of n spheres S2 ,  
which is a homogeneous space of the group SU.,,, namely the homogeneous space 
SU,+,/(U, x U, X . .  . x U,)  (see Bacry 1980). Bertrand's theorem says that the only 
spherical potential which has SO, as a symmetry group is the Kepler potential. 

A final remark concerns the quantization problem. As shown in Souriau (1970), 
the quantization of the sphere is obtained in making its radius equal to an integer. 
From ( I ) ,  one gets the quantization of the hydrogen atom, namely H =-mk' /2n2,  as 
expected. The same procedure applied to (2) would give H i  = n'w', that is H = no, 
instead of H = ( n  +&J. There must be an explanation for this discrepancy, but I do 
not know it. It would be interesting to understand a formal use of such a procedure 
in the general case. 

j 
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